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Photonic band structure of highly deformable self-assembling systems

P. A. Bermel and M. Warner
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 28 March 2001; published 14 December 2001!

We calculate the photonic band structure at normal incidence of highly deformable, self-assembling
systems—cholesteric elastomers subjected to external stress. Cholesteric elastomers display brilliantly colored
reflections and lasing owing to gaps in their photonic band structure. This band structure has been shown to
vary sensitively with strain in both theory and experiment. New gaps open up and all gaps shift in frequency.
We predict a different ‘‘total’’ band gap for all polarizations in the vicinity of the previously observed de Vries
band gap, which is only for one polarization.
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Photonic band-gap~PBG! materials offer a new approac
to the manipulation of light that depends on the struct
rather than the atomic or molecular properties of materi
These materials have two unique properties that has spu
interest in their design, namely, the localization of light@1#
and modification of the spontaneous emission spectrum f
atoms and molecules@2#. Several approaches have be
taken to manufacture PBG materials. Yablonovitch co
structed an fcc photonic crystal by drilling holes into a d
electric medium@3#. Later, Ozbay and co-workers designed
picket fence structure that is assembled by stacking t
dimensional layers@4#.

Recently, there has been an increased interest in
assembling PBG systems due to their relative ease of m
facture for operation at optical and near-infrared wa
lengths. Several examples include air holes in a tita
matrix @5#, copolymer-homopolymer films that form lamella
structures@6#, thin films of poly-~methyl-methacrylate! in-
filled with SnS2 @7#, and cholesteric liquid crystals~CLCs!
@8–10#.

One of the most promising applications of photonic ban
gap materials is in low-threshold lasing. Yablonovitch a
Gmitter @3# first predicted that the lasing threshold would
decreased by introducing a defect into an otherwise per
photonic material. Since spontaneous emission is suppre
in the bulk, excitation would not be drained by any emiss
into nonlasing modes. Such low-threshold lasing has rece
been observed in two-dimensional photonic crystals@11#. Al-
ternatively, one can design lasers that take advantage o
enhanced dwell time associated with the band edge di
gence of the density of states@12#. Experimentally, this band
edge lasing has been observed in CLC’s@9# and cholesteric
elastomers~CE’s! @10#, for reasons we shall relate to th
band structures we predict.

A CLC has local orientational ordering along a directorn,
which rotates as a periodic function of distance along
pitch axis z. The director of an ideal CLC advances un
formly, tracing out a helix of pitchp0. The pitch can be
adjusted to match the wavelength of visible light, whereup
a number of spectacular optical effects are observed exp
mentally and explained theoretically@8#. In particular, in ex-
periments conducted at normal incidence, circularly po
ized light that twists in the same sense as the helix
reflected with its original polarization, while circularly pola
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ized light that twists in the opposite sense is transmitted
changed. Normal incidence has been of prime concern s
the optical response of such twisting nematic media is
basis of liquid crystal~LC! display technology. A CLC can
be considered locally uniaxial, with a dielectric permittivi
e i alongn ande' perpendicular ton. By solving Maxwell’s
equations in a rotating frame, de Vries found a single ba
gap in the photonic structure of an ideal CLC at norm
incidence@8#.

The calculations we present on CE’s point to differe
phenomena and different applications, not possible in ex
ing photonics and hitherto unsuspected in the liquid crys
field. For instance, we find multiple gaps, some not at
zone edges, in contrast to classical CLC’s. We also obse
gaps for light of the opposite handedness to the underly
helix, again unexpected in classical CLC systems. At so
points the gaps for both polarizations overlap, giving a to
gap of significance when polarization control is require
Our systems are highly deformable~to many 100s%! and we
shall find shifts in the~developing! band structure that can b
large and that are experimentally confirmed@10,13#. Existent
photonic media typically have piecewise variation of an is
tropic refractive index in going between a matrix and
inclusions. In one theoretical calculation, nematic liqu
crystals were used to fill an inverse opal structure@14#; how-
ever, the problem was readily transformed to the previo
problem by a uniform rotation of the coordinate axes.
contrast, CLC’s have a continuous variation of the princip
axes of birefringence, which corresponds to a continuou
rotating coordinate frame. The principal axes guide
waves along a generally nontrivial, periodic path and g
rise to sharply different behaviors for each polarization. P
larization effects are thus very subtle and become more
for oblique incidence, which we consider in greater det
elsewhere. Control of polarization is at the heart of LC a
optical devices; we thus view this work as a first step tow
different classes of photonic solids with deformable, tuna
band structures for different applications.

CE’s can be made by crosslinking cholesteric polym
liquid crystals @13#. Defect-free monodomain rubber strip
tens of centimeters long display spectacular optical effe
viz. large changes in the frequencies of reflection and las
@10# in response to imposed mechanical strains that coupl
director orientation~Fig. 1!. These strips can be thick and a
©2001 The American Physical Society02-1
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oriented not by surface anchoring as in liquids, but by int
action between local directors and the rubber matrix.

Elongationsl[lxx , applied perpendicularly to the pitc
axis ~see Fig. 1! are predicted to coarsen the initially helic
director structure, given byf05q0z ~wheref is the angle
the director makes with thex axis!, to one dominated by
regions of slowly varying angles, separated by increasin
sharp twist walls@15#, see Fig. 2.

At a critical l5lc , the walls become thermodynamical
unstable and the director experiences periodic oscillati
aboutf50 that diminish with increasingl. There are atten-
dant contractions perpendicular to the stretch. The p
shrinks affinely@10# with the matrix. In the small stretching
limit ( l→1), the pitch varies asp5p0l22/7 and the first
reciprocal lattice vector goes asq5q0l2/7. Thus, the band
structure changes upon extension because of two factors
dilation of the reciprocal space and the change in the mo
lation character of the dielectric tensor along the pitch a
e= (z). These changes can be very large.

I. THEORY

Maxwell’s equations yield@16#

S v

c D 2

H5“3@=e ~z!21~“3H!#. ~1!

FIG. 1. A CE showing the initially helical director distribution
f0(z). Elongationlxx is applied perpendicular to the pitch axis th
contracts bylzz. The dielectric tensor is represented in its loc
principal frame bye i ande' .

FIG. 2. Modification of director distribution,f( z̃) by anx de-

formation l. The dielectric tensor’s principal frame followsf( z̃),
helix distortions induce band-structure changes.
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For normal incidence, along thez axis, the magnetic fieldH
is transverse and exists wholly in thexy plane. We thus
suppress thez components in the inverse dielectric tens
given by

S e i
21 0

0 e'
21D

in its principal frame@oriented at anglef(z) to x, Fig. 1#. “
is only (d/dz) ẑ.

We apply Bloch’s theorem to decomposeH into plane
wave components@16#, so that

H5(
G,g

h(Gg)êgei (k1G)z, ~2!

where the unit vectors areg5$1,2%, ê15 x̂, and ê25 ŷ, and
the reciprocal lattice vectorG52nqẑ, for n integer. This
procedure yields a matrix equation that reduces to a dim
sionless form, lengths transform according toz→ z̃5zq/2p,
wave vectors go ask→ k̃5k/q, reciprocal lattice vectorsG
→2n, frequencies go asv→ṽ5v/(cqAa) and e=21

→e=21/a wherea5 1
2 @(1/e i)1(1/e')#. This reduction is im-

portant for the proper interpretation of the shifts of ba
structure with elongation in Figs. 3 and 4. Sinceq5qol2/7

changes withl, so dov andk.

Equation ~1! then assumes the formA= (ng),(ng)8
k̃ h(ng)8

5ṽ2h(ng) . A= k̃ thus determines the photonic band structu
of a CLC. It depends on the reduced inverse dielectric ten
at arbitraryz and thus at anglef5f(z),

e=21~z!51=2a$@cos~2f!#s= z1@sin~2f!#s= x%, ~3!

where a[(e i2e')/(e i1e') follows the notation of de
Vries @8#, and thes= i are the Pauli spin matrices.

One can then show that ing space,A= k̃ is given by

l FIG. 3. Forl51.1,lc , two differences from the de Vries cas
are observed:~1! additional band gaps are created at higher zo
boundaries for the RP branch and~2! band gaps are also observe
for the previously uninteresting LP branch, albeit much smaller th
the RP gaps. The single gap in the de Vries case is approxima
that marked by dots.
2-2
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A= n,n8
k̃

5~ k̃1n!2dn,n81=1a~ k̃1n!~ k̃1n8!

3~cn82ns= z1sn82ns= x!, ~4!

wheresn82n andcn82n are the Fourier coefficients of sin(2f)
and cos(2f), respectively,

sn[*0
1/2dz̃sin@2f~ z̃!#exp~24p inz̃!

andcn, similarly.

The undeformed director anglesf( z̃) are f052p z̃. On
anx strainl, accompanied by relaxationlyy(l) assumed to
be uniform and determined by energy minimization, the pr
cipal frame orientation is given by@15#

tan~2f!5
2llyy~r 21!sin~4p z̃!

~r 21!~l21lyy
2 !cos~4p z̃!1~r 11!~l22lyy

2 !
,

wherer is the shape anisotropy of the polymers underly
the nematic phase. See Fig. 2 forf( z̃) for various d5l
21. From tan(2f), one can easily obtain sin(2f) and
cos(2f), and thus,sn82n andcn82n .

Numerical diagonalization of the matrixA= (nl),(nl)8
k̃ at a

range of k̃ yields a dispersion relationṽ( k̃), along with
eigenvectors giving the character of each solution. In g
eral, the eigenvectors are elliptically polarized inside
CLC medium, with semimajor and semiminor axes cor
sponding at each point to the local principal axes of
dielectric tensor, and nearly circularly polarizedin vacuo@8#.
We takee i53 and a depressed valuee'51.2 throughout,
simply for readability.

At small k̃!1, the dispersion relation for an ideal CL
~i.e., l5lyy51) is linear, corresponding to nondispersi
waves, with a simple effective refractive indexm
5A(e'1e i)/2, suggesting that both modes effectively exp
rience the same, homogeneous medium at long wavelen
This small k̃ behavior is initially retained in the strain
modified band structures, see Fig. 3.

At k̃51, branch, denoted by RP in Figs. 3 and 4, who
polarization rotates in the same sense as the helixin vacuo

FIG. 4. For l51.3.lc , substantial divergence from the d
Vries dispersion relation is observed. A full band gap away from
Brillouin zone boundary is observed, as well as several anticr
ings between branches.
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develops the de Vries gap@8#. The eigenmodes of this branc
at the zone boundary are linearly polarized inside the C
medium. The lower band’s electric vector points alongn(r ),
the upper band’s perpendicularly ton(r ), in the xy plane.
The other branch, denoted by LP, however, cannot s
analogously, since its polarizationin vacuorotates in a sense
opposite to the helix. This is qualitatively similar to the m
jor gap in the distorted band structure, marked with dots
k̃51 in Fig. 3. Furthermore, no gaps are observed fork̃.1,
because band gaps are created only when degenerate e
states are linked by nonzero matrix elements. Since in the
Vries case, there are only two harmonic components of eq
and opposite frequencies, only the matrix elements link
the two lowest energy states on either side of the first B
louin zone boundary are nonvanishing.

We now stretch CE’s withr 51.9 for definiteness, which
gives alc'r 2/7'1.2 @15#. Figure 3 shows the dispersio
relation for an elongationl51.1,lc . Since the first Bril-
louin zone boundary is atk̃51, band gaps may occur atk
5nq0lb, for integernÞ0, with b52/7. This corresponds to
a shift in color and in lasing frequency, as observed in C
@10,13#, toward the ultraviolet.

For l>lc , there is a qualitative change in the behav
of the director,f(z) ~see Fig. 2!, and thus a qualitative
change in the band structure. Additionally, the scaling beh
ior of lzz(l)5l2b changes@15# from b52/7, in the limit
of small stretching (l;1), to b51/2 for l.lc , the classi-
cal exponent for isotropic CE’s. Figure 4 shows the disp
sion relation for a stretchl51.3.lc .

We now analyze the gap structures that open up in
stretched case,l.1. The elastic strain,d[l21, is the per-
turbation parameter modifying the perfect helical structu
Whereas before,c6151/2 and cn50, otherwise, we now
have nonzero values forc6n that scale asdn21 for n.1 and
d!1; c61512O(d2) andc0;d. Applying degenerate per
turbation theory, we eliminate all matrix elements
A=

(nl),(nl)8

n0 except for those linking the degenerate ener
states, and predict that the gaps for the interesting polar
tion in the de Vries case will scale with the magnitude of t
off-diagonal elements, given bycn0

. The first order ~de
Vries! gap will be approximately constant, the second ord
gap ~first new gap! will grow as d, the third order gap will
grow asd2, and so on, see Fig. 5. More precisely, at the fi

e
s-

FIG. 5. Scaling of the first to fourth gap sizes of a CE withd.
The points represent numerical data, the straight lines, predict
from perturbation theory~assuming a scaling form forcn andsn).
2-3
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order gap,ṽ2516a(c16Ac0
22s1

2), sinces050. As a re-
sult, we also predict that the opposite polarization will no
have a nonzero gap that scales asd2. That tells us that afull

photonic band gap will be created atk̃51 as we perturb our
helix by transverse elongation, and that its size will scale
d2, the size of the much smaller gap of opposite polarizati
see Figs. 3 and 5.

Of experimental interest is thein vacuowavelength,L, of
the light corresponding to a givenṽ on the dispersion rela
tion, particularly at the gaps. The definitions below Eq.~2!

give L5p0 /(ṽAal2/7). Pitchesp0 typically give a band in
the visible so the initial wavelengths areL05p0 /Aa

;500 nm at ṽ5l51, which allows us to writeL

5L0 /(ṽl2/7). Likewise the first order de Vries gap is give
by DL'L0 /l2/7a. The higher order gaps of the same p
larization will have widths of DLn'CL0dn21/(nl2/7),
whereC is a prefactor of order unity that will depend onr
and a. For example, the second order gap in a rubber w
r 51.9, a50.43, and d50.1, the gap will be DL2
'0.045L0. For L0'800 nm, that implies a stop band fo
the light with a circular polarization of the same sense as
helix will be observed forL5362 nm toL5398 nm.

Finally, a note about oblique incidence in CE’s. By sym
metry, we expect that the magnetic field must have the s
magnitude at all points for a givenz, and only differ by a
phase. That lets us generalize theH vector for normal inci-
dence, Eq.~2!, by k→k85k'r̂1kiẑ and êg→ê(Gg)8 . Our
preliminary findings indicate that for a constantk8, the stop
bands shift upwards as we increase the angle of incide
from zero, which implies that refraction out of a normal
incident beam path is forbidden for modes just above
stop band. That observation provides a mechanism to exp
the spatial coherence of the light produced by dye-do
pumped lasers based on CLC’s and CE’s@9,10#.

II. CHOLESTERIC LIQUIDS

Apply a magnetic fieldH along they direction. A CLC
has an anisotropic susceptibilityxa5x i2x' . The helix un-
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twists ~increasing the period! and coarsens@17# until the en-
ergy gain from aligning with the field balances the Fra
penalty for deviations from the original structure. The dire
tor orientations coarsen, as in Fig. 2, but with thez coordi-
nate being reduced toz̃ by a lengtheningperiod. At a critical
field Hc5(pq0/2)AK22/xa, where K22 is the Frank twist
elastic constant, the period diverges logarithmically as
entire sample aligns with the external field@17#. For typical
cholesteric liquids with a pitch of 20mm, Hc515 000 G,
andEc550 sV/cm@17#. Differences from CEs under strai
are detailed in@15#.

The optical implications of coarsening were investigat
by Meyer and co-workers@18#. We find the Fourier coeffi-
cients describing the twist of the cholesteric liquid to sc
just as the coefficients describing CE’s forl,lc . One can
use the results for the CE case for a cholesteric liquid un
the transformationd→h̃2. The dispersion relations are qual
tatively the same as in Fig. 3. The width and scaling of
gaps created resemble those of Fig. 5, but with all effe
ending abruptly ath̃51.

III. CONCLUSIONS

An entirely different type of photonic material has be
described and characterized. Not only is it self-assemb
and easily available as large, defect-free single crystals, b
is highly deformable. Earlier descriptions@15,17# of its
modified periodic dielectric structure have been used as
basis for calculating its band structure. New gaps arise
their widths scale in a well-understood fashion with t
stretch applied to the material or the strength of the exte
field. The midgap frequencies shift position by large amou
comparable to their initial values.
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