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We calculate the photonic band structure at normal incidence of highly deformable, self-assembling
systems—cholesteric elastomers subjected to external stress. Cholesteric elastomers display brilliantly colored
reflections and lasing owing to gaps in their photonic band structure. This band structure has been shown to
vary sensitively with strain in both theory and experiment. New gaps open up and all gaps shift in frequency.
We predict a different “total” band gap for all polarizations in the vicinity of the previously observed de Vries
band gap, which is only for one polarization.
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Photonic band-gafPBG) materials offer a new approach ized light that twists in the opposite sense is transmitted un-
to the manipulation of light that depends on the structurechanged. Normal incidence has been of prime concern since
rather than the atomic or molecular properties of materialsthe optical response of such twisting nematic media is the
These materials have two unique properties that has spurrdzhsis of liquid crystalLC) display technology. A CLC can
interest in their design, namely, the localization of light  be considered locally uniaxial, with a dielectric permittivity
and modification of the spontaneous emission spectrum frong; alongn ande, perpendicular t. By solving Maxwell’'s
atoms and molecule§2]. Several approaches have beenequations in a rotating frame, de Vries found a single band
taken to manufacture PBG materials. Yablonovitch con-gap in the photonic structure of an ideal CLC at normal
structed an fcc photonic crystal by drilling holes into a di- incidence[8].
electric mediunj3]. Later, Ozbay and co-workers designed a The calculations we present on CE’s point to different
picket fence structure that is assembled by stacking twophenomena and different applications, not possible in exist-
dimensional layer$4]. ing photonics and hitherto unsuspected in the liquid crystal

Recently, there has been an increased interest in selfield. For instance, we find multiple gaps, some not at the
assembling PBG systems due to their relative ease of manzene edges, in contrast to classical CLC’s. We also observe
facture for operation at optical and near-infrared wave-gaps for light of the opposite handedness to the underlying
lengths. Several examples include air holes in a titanidelix, again unexpected in classical CLC systems. At some
matrix [5], copolymer-homopolymer films that form lamellar points the gaps for both polarizations overlap, giving a total
structures[6], thin films of poly{methyl-methacrylatein-  gap of significance when polarization control is required.
filled with SnS [7], and cholesteric liquid crystalCLCs)  Our systems are highly deformalil®e many 100s%and we
[8-10. shall find shifts in thédeveloping band structure that can be

One of the most promising applications of photonic band4arge and that are experimentally confirnjd®,13. Existent
gap materials is in low-threshold lasing. Yablonovitch andphotonic media typically have piecewise variation of an iso-
Gmitter[3] first predicted that the lasing threshold would betropic refractive index in going between a matrix and its
decreased by introducing a defect into an otherwise perfedhclusions. In one theoretical calculation, nematic liquid
photonic material. Since spontaneous emission is suppressedystals were used to fill an inverse opal structur4]; how-
in the bulk, excitation would not be drained by any emissionever, the problem was readily transformed to the previous
into nonlasing modes. Such low-threshold lasing has recentlgroblem by a uniform rotation of the coordinate axes. By
been observed in two-dimensional photonic crystais. Al- contrast, CLC’s have a continuous variation of the principal
ternatively, one can design lasers that take advantage of ttaxes of birefringence, which corresponds to a continuously
enhanced dwell time associated with the band edge diverotating coordinate frame. The principal axes guide the
gence of the density of statgk2]. Experimentally, this band- waves along a generally nontrivial, periodic path and give
edge lasing has been observed in CL[@%and cholesteric rise to sharply different behaviors for each polarization. Po-
elastomers(CE’s) [10], for reasons we shall relate to the larization effects are thus very subtle and become more so
band structures we predict. for oblique incidence, which we consider in greater detall

A CLC has local orientational ordering along a direator  elsewhere. Control of polarization is at the heart of LC and
which rotates as a periodic function of distance along theoptical devices; we thus view this work as a first step toward
pitch axisz. The director of an ideal CLC advances uni- different classes of photonic solids with deformable, tunable
formly, tracing out a helix of pitchp,. The pitch can be band structures for different applications.
adjusted to match the wavelength of visible light, whereupon CE’s can be made by crosslinking cholesteric polymer
a number of spectacular optical effects are observed expetiquid crystals[13]. Defect-free monodomain rubber strips
mentally and explained theoreticallg]. In particular, in ex-  tens of centimeters long display spectacular optical effects,
periments conducted at normal incidence, circularly polarviz. large changes in the frequencies of reflection and lasing
ized light that twists in the same sense as the helix i§10] in response to imposed mechanical strains that couple to
reflected with its original polarization, while circularly polar- director orientatior{Fig. 1). These strips can be thick and are
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FIG. 1. A CE showing the initially helical director distribution, 00 0"1 012 013 0'_4 0.5

$o(2). Elongationh,, is applied perpendicular to the pitch axis that
contracts by\,,. The dielectric tensor is represented in its local  FIG. 3. Forn=1.1<\., two differences from the de Vries case
principal frame bye| ande, . are observed(l) additional band gaps are created at higher zone
boundaries for the RP branch af®) band gaps are also observed

oriented not by surface anchoring as in liquids, but by interfor the previously uninteresting LP branch, albeit much smaller than
action between local directors and the rubber matrix. the RP gaps. The single gap in the de Vries case is approximately

Elongations\ =X\, applied perpendicularly to the pitch that marked by dots.
axis (see Fig. 1 are predicted to coarsen the initially helical
director structure, given by,=0oz (Where ¢ is the angle For normal incidence, along treaxis, the magnetic fieltt
the director makes with th& axis), to one dominated by is transverse and exists wholly in they plane. We thus
regions of slowly varying angles, separated by increasinglypuppress the components in the inverse dielectric tensor,
sharp twist wall{15], see Fig. 2. given by

At a critical A =\, the walls become thermodynamically
unstable and the director experiences periodic oscillations 6”*1 0
about¢ =0 that diminish with increasiny. There are atten- 1
dant contractions perpendicular to the stretch. The pitch 0 &
shrinks affinely[10] with the matrix. In the small stretching
limit (A—1), the pitch varies ap=po\ 2" and the first
reciprocal lattice vector goes @g=qo\?". Thus, the band
structure changes upon extension because of two factors, t
dilation of the reciprocal space and the change in the modu-
lation character of the dielectric tensor along the pitch axis)"
€(z). These changes can be very large.

in its principal framg oriented at angles(z) to x, Fig. 1]. V
is,only (d/d2)z.

We apply Bloch’s theorem to decomposk into plane
ave componentgl6], so that

H=2 h,e,e'®e? ®)
. THEORY G
Maxwell's equations yield16] where the unit vectors are={1,2}, e;=X, ande,=y, and
5 the reciprocal lattice vecto6=2nqz for n integer. This
w 1 i i i -
(_) H=Vx[e(2) X(VXH)]. ) p.rocedure yields a matrix equation that. reduc~es to a dimen
c N sionless form, lengths transform accordingzte z=z /2,

wave vectors go ak—k=k/q, reciprocal lattice vector&

" ' ' ' ' —2n, frequencies go asw—w=w/(cqya) and e *
0 —¢€ '/a wherea= ;[ (1/e)) +(1/e,)]. This reduction is im-
S ] portant for the proper interpretation of the shifts of band
structure with elongation in Figs. 3 and 4. Singe q,A%"
m2r ol el changes with\, so dow andk. )
wal ek, ) Equation (1) then assumes the forr@'(‘ny)y(ny),h(ny),
otk =w?h(,, . A thus determines the photonic band structure
5 of a CLC. It depends on the reduced inverse dielectric tensor
at arbitraryz and thus at angléb= ¢(2),
-75/4 " | L | L 1 L 1 L _ .
0 02 04 06 08 ! e H(2)=1-a{[cog2¢)]g,+[siN2¢)]g.}, (3

z/p

FIG. 2. Modification of director distribution(z) by anx de- ~ Where a=(¢|—€,)/(¢+¢€,) follows the notation of de

formation \. The dielectric tensor's principal frame follows(z), ~ Vries [8], and theg; are the Pauli spin matrices.
helix distortions induce band-structure changes. One can then show that ip space,gk is given by
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) . FIG. 5. Scaling of the first to fourth gap sizes of a CE with
FIG. 4. ForA=1.3>)., substantial divergence from the de pe hoints represent numerical data, the straight lines, predictions
Vries dispersion relation is observed. A full band gap away from theyq, perturbation theoryassuming a scaling form far, ands,).
Brillouin zone boundary is observed, as well as several anticross-
ings between branches. develops the de Vries gd4B]. The eigenmodes of this branch
- at the zone boundary are linearly polarized inside the CLC

A =(k+n)25, 11+ a(k+n)(k+n’) medium. The lower band’s electric vector points alarg),
' the upper band’s perpendicularly tdr), in the xy plane.
X(Cnr—n@z+ Snr—n@x), (4 The other branch, denoted by LP, however, cannot split

] o ] analogously, since its polarizati@m vacuorotates in a sense
wheres,, _, andc, ., are the Fourier coefficients of sig?  gpposite to the helix. This is qualitatively similar to the ma-
and cos(3), respectively, jor gap in the distorted band structure, marked with dots at

125 ~ o~ k=1in Fig. 3. Furthermore, no gaps are observedkforl ,
$n=1/o dzsin2¢(z)]exp( —4minz) because band gaps are created only when degenerate energy
andc,, similarly. states are linked by nonzero matrix elements. Since in the de
~ ~ Vries case, there are only two harmonic components of equal
The undeformed director angle&(z) are ¢o=27z. On  and opposite frequencies, only the matrix elements linking
anx strain\, accompanied by relaxation,,(\) assumed to the two lowest energy states on either side of the first Bril-
be uniform and determined by energy minimization, the prinqouin zone boundary are nonvanishing.

cipal frame orientation is given biyL5] We now stretch CE’s withr=1.9 for definiteness, which
5 gives ar~r?’~1.2 [15]. Figure 3 shows the dispersion
2NN\ (r—1)sin(47z) relation for an elongatiom =1.1<\.. Since the first Bril-
tan(2¢)= Yy ~
(r—1)(\2+ )\§y)cog(47.,§)+(r+1)()\2_)\§y)’ louin zone boundary is &=1, band gaps may occur kt

=ngy\?, for integern# 0, with 3= 2/7. This corresponds to
wherer is the shape anisotropy of the polymers underlying2 shift in color and in lasing frequency, as observed in CE's
the nematic phase. See Fig. 2 f¢(z) for various 5=\ [10,13, toward the u_ItraV|oIet._ . . .
—1. From tan(2), one can easily obtain sing? and For)\%)\c, there is a quqlltat|ve change in the pehgwor
cos(24), and thuss,, _, andc,, . of the @rector, ¢(z) (see Fig. 2_§1nd thus a quglltatlve
) ) o ", change in the band structure. Additionally, the scaling behav-
Numerical diagonalization of the matri,,) i, at @ jor of A, (\)=\"# changeq15] from g=2/7, in the limit
range ofk yields a dispersion relatiom(k), along with  of small stretching X~ 1), to 8=1/2 for A>\., the classi-
eigenvectors giving the character of each solution. In geneal exponent for isotropic CE’s. Figure 4 shows the disper-
eral, the eigenvectors are elliptically polarized inside thesion relation for a stretch =1.3>\.
CLC medium, with semimajor and semiminor axes corre- We now analyze the gap structures that open up in the
sponding at each point to the local principal axes of thestretched case,>1. The elastic straing=\—1, is the per-
dielectric tensor, and nearly circularly polarizedvacuo[8].  turbation parameter modifying the perfect helical structure.
We takee =3 and a depressed value =1.2 throughout, Whereas beforec.;=1/2 andc,=0, otherwise, we now
simply for readability. have nonzero values far. , that scale ag"~* for n>1 and
At small k<1, the dispersion relation for an ideal CLC 6<1; c.;=1—0(5% andc,~ 5. Applying degenerate per-
(i.e., \=\,y=1) is linear, corresponding to nondispersive turbation theory, we eliminate all matrix elements in
waves, with a simple effective refractive indem  A° , except for those linking the degenerate energy
. . = (n\),(n\)
= (€. T €))/2, suggesting that both modes effectively expe-states, and predict that the gaps for the interesting polariza-
rience the same, homogeneous medium at long wavelengthgen in the de Vries case will scale with the magnitude of the
This small'k behavior is initially retained in the strain- off-diagonal elements, given byno. The first order(de
modified band structures, see Fig. 3. Vries) gap will be approximately constant, the second order
At k=1, branch, denoted by RP in Figs. 3 and 4, whosegap (first new gap will grow as 8, the third order gap will
polarization rotates in the same sense as the fielislacuo  grow asé?, and so on, see Fig. 5. More precisely, at the first
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order gap,w?=1+ a(c,* \Jc2—s?), sinces,=0. As a re- twists(increasing the perigcand coarsenfl7] until the en-

sult, we also predict that the opposite polarization will now®rdy gain from aligning with the field balances the Frank

have a nonzero gap that scalesssThat tells us that &ull penallty for_dewatlons from the orlglnal structure. The d'lrec-

: . ~ tor orientations coarsen, as in Fig. 2, but with theoordi-

photonic band gap will be createdlat 1 as we perturb our ) ~ ) ) .

helix by transverse elongation, and that its size will scale a§ate being reduced by alengtheningperiod. At a critical

82, the size of the much smaller gap of opposite polarizationfi€ld Hc=(700/2)VK22/xa, whereKz; is the Frank twist

see Figs. 3 and 5. eIa_stlc constant, the p.enod diverges Iggar|thm|ca||y_ as the
Of experimental interest is thie vacuowavelengthA, of ~ €ntire sample aligns with the external figtti7]. For typical

the light corresponding to a givem on the dispersion rela- chglgst_egg l'(ilu/'ds !V;[h gﬁpltch of ?Qn glcf_ 15300 tG

tion, particularly at the gaps. The definitions below E2). :?e dét_ailed Sir{]_%an[ ]. Differences from CEs under strain

give A = pO/(“’\/a)‘m)_- Pitchesp, typically give a band in The optical implications of coarsening were investigated

the visible so the initial wavelengths aré o= Po/\a by Meyer and co-worker§l8]. We find the Fourier coeffi-

~500 nm at w=A=1, which allows us to writeA cients describing the twist of the cholesteric liquid to scale

=Ao/(w\?7). Likewise the first order de Vries gap is given just as the coefficients describing CE’s for<\.. One can

by AA~Ay/N?"a. The higher order gaps of the same po-Uuse the results for the CE case for a cholesteric liquid under

larization will have widths of AA,~CA,8" Y/ (n\?"),  the transformatio—h2. The dispersion relations are quali-

whereC is a prefactor of order unity that will depend on tatively the same as in Fig. 3. The width and scaling of the

and «. For example, the second order gap in a rubber withgaps created resemble those of Fig. 5, but with all effects

r=1.9, «=0.43, and §=0.1, the gap will be AA, ending abruptly ah=1.

~0.045\,. For A;=~800 nm, that implies a stop band for

the light with a circular polarization of the same sense as the Ill. CONCLUSIONS

helix will be observed forA=362 nm toA=398 nm. . : : .
An entirely different type of photonic material has been

Finally, a note about oblique incidence in CE’s. By sym- . : o i
metry, we expect that the magnetic field must have the Samgescrlbed and characterized. Not only is it self-assembling

- : ; : d easily available as large, defect-free single crystals, but it
magnitude at all points for a given and only differ by a and | i L )
phase. That lets us generalize tHevector for normal inci- is highly deformable. Earlier descriptior{d5,17 of its
dence, Eq.2), by kK’ =k, p+k2 and & 8! our modified periodic dielectric structure have been used as the

» Eq.2), —K =K pTK| YOGy

o - o basis for calculating its band structure. New gaps arise and
preliminary findings indicate that for a constdt the stop  hair widths scale in a well-understood fashion with the

bands shift upwards as we increase the angle of incidencgeich applied to the material or the strength of the external

from zero, which implies that refraction out of a normally fig|q The midgap frequencies shift position by large amounts
incident beam path is forbidden for modes just above th%omparable to their initial values.

stop band. That observation provides a mechanism to explain
the spatial coherence of the light produced by dye-doped ACKNOWLEDGMENTS
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